01.YOLOV8(Ultralytics)安装
本机依赖:
VisualStudio 2022 cuda11.7
cuda 11.7.0
cudnn 8.9.6
cmake 3.26.0
conda 23.11.0
labelme 5.4.1
numpy 1.24.3
torch 1.13.1+cu117
torchaudio 0.13.1+cu117
torchvision 0.14.1+cu117
前言
本文基于ultralytics。
1 环境安装
1.1 虚拟环境
conda create -n yolov8 python=3.8
activate yolov8
1.2 Pytorch
PyTorch 要求因操作系统和 CUDA 要求而异
在官网上找寻适合自己cuda版本的torch口令安装
pytorch:Previous PyTorch Versions | PyTorch
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
1.3 Ultralytics
1.3.1 安装
yolov8有两种安装方式,一种可直接安装U神的库:
pip install ultralytics
git clone https://github.com/ultralytics/ultralytics.git
1.3.2 语法
安装Ultralytics
后就可以使用 yolo
,语法:
yolo TASK MODE ARGS
Where TASK (optional) is one of [detect, segment, classify]
MODE (required) is one of [train, val, predict, export, track]
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
1.3.3 验证
cd ultralytics
yolo task=segment mode=predict model=yolov8s-seg.pt source='ultralytics/assets/bus.jpg' show=True
(yolov8) D:\GraduationDesign\YOLOv8\ultralytics>yolo task=segment mode=predict model=yolov8s-seg.pt source='ultralytics/assets/bus.jpg' show=True
Downloading https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-seg.pt to 'yolov8s-seg.pt'...
100%|██████████████████████████████████████████████████████████████████████████████| 22.8M/22.8M [00:24<00:00, 983kB/s]
Ultralytics YOLOv8.1.30 🚀 Python-3.8.18 torch-1.13.1+cu117 CUDA:0 (NVIDIA GeForce RTX 2060, 6144MiB)
YOLOv8s-seg summary (fused): 195 layers, 11810560 parameters, 0 gradients, 42.6 GFLOPs
image 1/1 D:\GraduationDesign\YOLOv8\ultralytics\ultralytics\assets\bus.jpg: 640x480 4 persons, 1 bus, 1 tie, 23.0ms
Speed: 3.0ms preprocess, 23.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)
Results saved to runs\segment\predict
💡 Learn more at https://docs.ultralytics.com/modes/predict
版权申明
本文系作者 @ATRAY 原创发布在ATRAY站点。未经许可,禁止转载。
暂无评论数据